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2. What is a boundary layer?

A region, next to the boundary of the domain of action, not extending over 
the entire domain, where the effects of the boundary condition(s) - BCs – are 
felt by the solution of the governing partial differential equations (PDEs).
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2. What is a boundary layer?

A region, next to the boundary of the domain of action, not 
extending over the entire domain, where the effects of the 
boundary condition(s) - BCs – are felt by the solution of the 
governing partial differential equations (PDEs).

 

Purely MATHEMATICAL definition!!

 

Therefore, there are mathematical boundary layers in the solutions 
of PDEs!!
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2. What is a boundary layer?

Physical boundary layers occur when the PDEs under 
consideration represent the physical behaviour of substance(s) 
over a certain region of space (with “boundaries”) and over a 
certain period of time.

 

Physical boundary layers can occur in phenomena involving 
deformations of solids, liquids and other media where these 
deformations or their rates are governed by the PDEs. 
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3. Fluid Flow and Navier-Stokes Equation

In a term, subscript indicates three components (say, i=1,2 and 3) 
and a repeated subscript indicates summation over that subscript

Newton’s second law of motion for the flow of fluids takes the 
form of the “governing” momentum equation
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3. Fluid Flow and Navier-Stokes Equation

Newton’s second law of motion for the flow of fluids takes the 
form of the “governing” momentum equation

 

LHS = mass (pu volume) of the fluid particle times its acceleration
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3. Fluid Flow and Navier-Stokes Equation

Newton’s second law of motion for the flow of fluids takes the 
form of the “governing” momentum equation

 

 

RHS = (vector) sum of forces (pu volume) acting on the fluid particle 
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3. Fluid Flow and Navier-Stokes Equation

LHS = mass (pu volume) of the fluid particle times its acceleration

RHS = (vector) sum of forces (pu volume) acting on the fluid particle 

 

Newton’s second law of motion for the flow of fluids takes the 
form of the “governing” momentum equation
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3. Fluid Flow and Navier-Stokes Equation

For a “Newtonian Fluid”, the stress is directly proportional to 
the strain rate i.e. the “constitutive” relation is  

 

Strain rate tensor
 

Stress tensor
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3. Fluid Flow and Navier-Stokes Equation

For an “Incompressible Flow”, the mass conservation equation 
reads  

 

Velocity field is divergence free!
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3. Fluid Flow and Navier-Stokes Equation

Navier-Stokes equation is the momentum equation for the 
incompressible flow of a newtonian fluid  

 

Body force term has been written as gradient of a scalar 
potential and has been absorbed in the pressure gradient term
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3. Fluid Flow and Navier-Stokes Equation

Note that this is a second-order, nonlinear PDE requiring six 
BCs (two for each velocity component integration with respect 
to space) and three ICs (one initial condition for each velocity 
component integration with respect to time) for its solution  
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4. Reynolds Number (Re)

Inertial term or Advection 
term (nonlinear)

Viscous term

“Scales”
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4. Reynolds Number (Re)

“Scaled” Navier-Stokes Equation
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4. Reynolds Number (Re)

For example, consider flow over a 
long circular cylinder at “high” Re
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4. Reynolds Number (Re)

Euler Equation (Inviscid)

For example, consider flow over a 
long circular cylinder at “high” Re
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4. Reynolds Number (Re)

Euler Equation (Inviscid)

In the limit of “infinite” Re, viscous term drops out of the NS 
equation and one obtains Euler Equation which is inviscid in 
character. 
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4. Reynolds Number (Re)

Euler Equation (Inviscid)

D’Alembert’s Paradox 

D’Alembert showed that Euler equation mathematically gives 
ZERO DRAG force on any body, a prediction that was completely 
at odds with the experiments.   
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5. Ludwig Prandtl

Ludwig Prandtl’s Resolution of d’Alembert’s paradox

 For fluids of very small viscosity flowing past a solid wall or 
surface, the velocity of the fluid at the wall must be the same 
as the velocity of the wall itself i.e. there is NO SLIP between 
the fluid and the wall. This is the “no slip” or “wall” BC.
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5. Ludwig Prandtl

Ludwig Prandtl’s Resolution of d’Alembert’s paradox

 For fluids of very small viscosity flowing past a solid wall or 
surface, the velocity of the fluid at the wall must be the same as 
the velocity of the wall itself i.e. there is NO SLIP between the 
fluid and the wall. This is the “no slip” or “wall” BC.

 To meet this “no slip” or “wall” BC, the fluid velocity must 
rapidly go from the “outer” inviscid solution value to zero at the 
wall over a short wall-normal distance. The layer of fluid over 
which this happens “knows” about the presence of the wall and 
is called as the “Boundary Layer”.     
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5. Ludwig Prandtl

Ludwig Prandtl’s Resolution of d’Alembert’s paradox

 The flow outside the boundary layer is inviscid and does not 
“know” or “feel” the presence of the wall. This is because the 
Euler Equation cannot accommodate the “no slip” BC due to 
loss of the second-order viscous term as a result of “scaling” 
wall-nomal variations also using the larger length scale.
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5. Ludwig Prandtl

Ludwig Prandtl’s Resolution of d’Alembert’s paradox

 The flow outside the boundary layer is inviscid and does not 
“know” or “feel” the presence of the wall. This is because the 
Euler Equation cannot accommodate the “no slip” BC due to 
loss of the second-order viscous term as a result of “scaling” 
wall-nomal variations also using the larger length scale.

 This viscous term, however, remains important within the 
“boundary layer” because the “no-slip” BC must be met. 
Therefore, “rescaling” of the Navier-Stokes equation (in the 
wall-normal coordinate, especially) is required to retain this 
term.    
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5. Ludwig Prandtl

Ludwig Prandtl’s Resolution of d’Alembert’s paradox

 The flow field therefore comprises of two regions. (a) Outer 
inviscid flow and (b) inner boundary layer flow.    

Wall

Viscous 
boundary layer

Inviscid 
freestream
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6. Thermal and Velocity Boundary Layers

Wall

Velocity 
boundary 

layer

Thermal 
boundary 

layer
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6. Thermal and Velocity Boundary Layers

 Boundary layer represents the extent of the flow over which 
“diffusion” of information about the wall BC has taken place
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6. Thermal and Velocity Boundary Layers

 Boundary layer represents the extent of the flow over which 
“diffusion” of information about the wall BC has taken place

 Thickness of a boundary layer depends on the “diffusivity” of 
the fluid (laminar flows) or the flow (turbulent flows)
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 Thermal boundar layer thickness depends on the thermal 
diffusivity
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6. Thermal and Velocity Boundary Layers

 Boundary layer represents the extent of the flow over which 
“diffusion” of information about the wall BC has taken place

 Thickness of a boundary layer depends on the “diffusivity” of 
the fluid (laminar flows) or the flow (turbulent flows)

 Thermal boundar layer thickness depends on the thermal 
diffusivity

 Velocity boundary layer thickness depends on the momentum 
diffusivity

 Laminar flows rely on slow “molecular” diffusion
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6. Thermal and Velocity Boundary Layers

 Boundary layer represents the extent of the flow over which 
“diffusion” of information about the wall BC has taken place

 Thickness of a boundary layer depends on the “diffusivity” of 
the fluid (laminar flows) or the flow (turbulent flows)

 Thermal boundar layer thickness depends on the thermal 
diffusivity

 Velocity boundary layer thickness depends on the momentum 
diffusivity

 Laminar flows rely on slow “molecular” diffusion
 Turbulent flows have eddies that enable very rapid “turbulent” 

diffusion
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